StatsPlots.jl

MCMCChains implements many functions for plotting via StatsPlots.jl.

Simple example

The following simple example illustrates how to use Chain to visually summarize a MCMC simulation:

using MCMCChains
using StatsPlots

# Define the experiment
n_iter = 100
n_name = 3
n_chain = 2

# experiment results
val = randn(n_iter, n_name, n_chain) .+ [1, 2, 3]'
val = hcat(val, rand(1:2, n_iter, 1, n_chain))

# construct a Chains object
chn = Chains(val, [:A, :B, :C, :D])

# visualize the MCMC simulation results
plot(chn; size=(840, 600))
GKS: cannot open display - headless operation mode active

Default plot for Chains

plot(chn, colordim = :parameter; size=(840, 400))
Example block output

Note that the plot function takes the additional arguments described in the Plots.jl package.

Mixed density

plot(chn, seriestype = :mixeddensity)
Example block output

Or, for all seriestypes, use the alternative shorthand syntax:

mixeddensity(chn)
Example block output

Trace

plot(chn, seriestype = :traceplot)
Example block output
traceplot(chn)
Example block output

Running average

meanplot(chn)
Example block output

Density

density(chn)
Example block output

Histogram

histogram(chn)
Example block output

Autocorrelation

autocorplot(chn)
Example block output

Violin

Violin plots are similar to box plots but also show the probability density of the data at different values, smoothed by a kernel density estimator.

violinplot(chn) # Plotting parameter 1 across all chains
Example block output
violinplot(chn, 1) # Plotting parameter 1 across all chains
Example block output
violinplot(chn, :A) # Plotting a specific parameter across all chains
Example block output
violinplot(chn, [:C, :B, :A]) # Plotting multiple specific parameters across all chains
Example block output
violinplot(chn, 1, colordim = :parameter) # Plotting chain 1 across all parameters
Example block output
violinplot(chn, show_boxplot = false) # Plotting all parameters without the inner boxplot
Example block output

You can also aggregate (pool) samples from all chains for a given parameter by using append_chains = true. This is useful when you want to visualize the overall posterior distribution without distinguishing between individual chains.

violinplot(chn, :A, append_chains = true) # Single parameter, all chains appended
Example block output
violinplot(chn, append_chains = true) # All parameters, all chains appended
Example block output

You can also use the plot function with seriestype = :violinplot or seriestype = :violin

plot(chn, seriestype = :violin)
Example block output

Corner

corner(chn)
Example block output

Energy Plot

The energy plot is a diagnostic tool for HMC-based samplers (like NUTS) that helps diagnose sampling efficiency by visualizing the energy and energy transition distributions. This plot requires that the chain contains the internal sampler statistics :hamiltonian_energy and :hamiltonian_energy_error.

# First, we generate a chain that includes the required sampler parameters.
n_iter = 1000
n_chain = 4
val_params = randn(n_iter, 2, n_chain)
val_energy = randn(n_iter, 1, n_chain) .+ 20
val_energy_error = randn(n_iter, 1, n_chain) .* 0.5
full_val = hcat(val_params, val_energy, val_energy_error)

parameter_names = [:a, :b, :hamiltonian_energy, :hamiltonian_energy_error]
section_map = (
    parameters=[:a, :b],
    internals=[:hamiltonian_energy, :hamiltonian_energy_error],
)

chn_energy = Chains(full_val, parameter_names, section_map)

# Generate the energy plot (default is a density plot).
energyplot(chn_energy)
Example block output
# The plot can also be generated as a histogram.
energyplot(chn_energy, kind=:histogram)
Example block output

For plotting multiple parameters, ridgeline, forest and caterpillar plots can be useful.

Ridgeline

ridgelineplot(chn, [:C, :B, :A])
Example block output

Forest

forestplot(chn, [:C, :B, :A], hpd_val = [0.05, 0.15, 0.25])
Example block output

Caterpillar

forestplot(chn, chn.name_map[:parameters], hpd_val = [0.05, 0.15, 0.25], ordered = true)
Example block output

Posterior Predictive Checks (PPC)

Posterior Predictive Checks (PPC) are essential tools for Bayesian model validation. They compare observed data with samples from the posterior predictive distribution to assess whether the model can reproduce key features of the data. Prior Predictive Checks can also be performed to evaluate prior appropriateness before seeing the data.

using Random
Random.seed!(123)

# Generate posterior samples (parameters)
n_iter = 500
posterior_data = randn(n_iter, 2, 2)  # μ, σ parameters
posterior_chains = Chains(posterior_data, [:μ, :σ])

# Generate posterior predictive samples
n_obs = 20
pp_data = zeros(n_iter, n_obs, 2)
for i in 1:n_iter, j in 1:2
    μ = posterior_data[i, 1, j]
    σ = abs(posterior_data[i, 2, j]) + 0.5  # Ensure positive σ
    pp_data[i, :, j] = randn(n_obs) * σ .+ μ
end
pp_chains = Chains(pp_data)

# Generate observed data
Random.seed!(456)
observed = randn(n_obs) * 1.2 .+ 0.3

# Basic posterior predictive check (density overlay)
# Note: observed data is shown by default for posterior checks
ppcplot(posterior_chains, pp_chains, observed)
Example block output

Plot Types

Our PPC implementation supports four main plot types:

Density Plots (Default)

# Density overlay with customized transparency
ppcplot(posterior_chains, pp_chains, observed;
        kind=:density, alpha=0.3, num_pp_samples=50)
Example block output

Histogram Comparison

# Normalized histogram comparison
ppcplot(posterior_chains, pp_chains, observed; kind=:histogram)
Example block output

Cumulative Distribution Functions

# Empirical CDFs comparison
ppcplot(posterior_chains, pp_chains, observed; kind=:cumulative)
Example block output

Scatter Plots with Jitter

# Index-based scatter plot with automatic jitter for small samples
ppcplot(posterior_chains, pp_chains, observed;
        kind=:scatter, num_pp_samples=8, jitter=0.3)
Example block output

Advanced Styling and Options

# Comprehensive customization example
ppcplot(posterior_chains, pp_chains, observed;
        kind=:density,
        colors=[:steelblue, :darkred, :orange],  # [predictive, observed, mean]
        alpha=0.25,
        observed_rug=true,      # Add rug plot for observed data
        num_pp_samples=75,      # Limit predictive samples shown
        mean_pp=true,           # Show predictive mean
        legend=true,
        random_seed=42)         # Reproducible subsampling
Example block output

Prior Predictive Checks

Prior predictive checks assess whether priors generate reasonable data before observing actual data. The ppc_group parameter controls default behavior:

# Prior predictive check - observed data hidden by default
ppcplot(posterior_chains, pp_chains, observed; ppc_group=:prior)
Example block output
# Prior check with observed data explicitly shown for comparison
ppcplot(posterior_chains, pp_chains, observed;
        ppc_group=:prior, observed=true, alpha=0.4)
Example block output

Controlling Observed Data Display

You can explicitly control whether observed data is shown regardless of the check type:

# Posterior check without observed data
ppcplot(posterior_chains, pp_chains, observed;
        ppc_group=:posterior, observed=false)
Example block output

Performance and Sampling Control

For large datasets or when you want to reduce visual clutter:

# Limit the number of predictive samples displayed
ppcplot(posterior_chains, pp_chains, observed;
        num_pp_samples=25,
        random_seed=123)  # Reproducible results
Example block output
ppcplot(posterior_chains::Chains, posterior_predictive_chains::Chains, observed_data::Vector;
        kind=:density, alpha=nothing, num_pp_samples=nothing, mean_pp=true, observed=nothing,
        observed_rug=false, colors=[:steelblue, :black, :orange], jitter=nothing, 
        legend=true, random_seed=nothing, ppc_group=:posterior)

API

MCMCChains.energyplotFunction
energyplot(chains::Chains; kind=:density, kwargs...)

Generate an energy plot for the samples in chains.

The energy plot is a diagnostic tool for HMC-based samplers like NUTS. It displays the distributions of the Hamiltonian energy and the energy transition (error) to diagnose sampler efficiency and identify divergences.

This plot is only available for chains that contain the :hamiltonian_energy and :hamiltonian_energy_error statistics in their :internals section.

Keywords

  • kind::Symbol (default: :density): The type of plot to generate. Can be :density or :histogram.
source
MCMCChains.energyplot!Function
energyplot(chains::Chains; kind=:density, kwargs...)

Generate an energy plot for the samples in chains.

The energy plot is a diagnostic tool for HMC-based samplers like NUTS. It displays the distributions of the Hamiltonian energy and the energy transition (error) to diagnose sampler efficiency and identify divergences.

This plot is only available for chains that contain the :hamiltonian_energy and :hamiltonian_energy_error statistics in their :internals section.

Keywords

  • kind::Symbol (default: :density): The type of plot to generate. Can be :density or :histogram.
source
energyplot(chains::Chains; kind=:density, kwargs...)

Generate an energy plot for the samples in chains.

The energy plot is a diagnostic tool for HMC-based samplers like NUTS. It displays the distributions of the Hamiltonian energy and the energy transition (error) to diagnose sampler efficiency and identify divergences.

This plot is only available for chains that contain the :hamiltonian_energy and :hamiltonian_energy_error statistics in their :internals section.

Keywords

  • kind::Symbol (default: :density): The type of plot to generate. Can be :density or :histogram.
source
MCMCChains.ppcplotFunction
ppcplot(posterior_chains::Chains, posterior_predictive_chains::Chains, observed_data::Vector; kwargs...)

Generate a posterior/prior predictive check (PPC) plot comparing observed data with predictive samples.

PPC plots are a key tool for model validation in Bayesian analysis. They help assess whether the model can reproduce the key features of the observed data by comparing the observed data against samples from the posterior (or prior) predictive distribution.

Arguments

  • posterior_chains::Chains: MCMC samples from the posterior (or prior) distribution
  • posterior_predictive_chains::Chains: Samples from the posterior (or prior) predictive distribution
  • observed_data::Vector: The observed data values

Keywords

  • kind::Symbol (default: :density): Type of plot - :density, :histogram, :scatter, or :cumulative
  • alpha::Real (default: 0.2 for density/cumulative, 0.7 for scatter): Transparency of predictive curves
  • num_pp_samples::Integer (default: all samples): Number of predictive samples to plot
  • mean_pp::Bool (default: true): Whether to plot the mean of predictive distribution
  • observed::Bool (default: true for posterior, false for prior): Whether to plot observed data
  • observed_rug::Bool (default: false): Whether to add a rug plot for observed data (kde/cumulative only)
  • colors::Vector (default: [:steelblue, :black, :orange]): Colors for [predictive, observed, mean_pp]
  • jitter::Real (default: 0.0, 0.7 for scatter with ≤5 samples): Jitter amount for scatter plots
  • legend::Bool (default: true): Whether to show legend
  • random_seed::Integer (default: nothing): Random seed for reproducible subsampling
  • ppc_group::Symbol (default: :posterior): Specify :posterior or :prior for appropriate defaults and labeling

Examples

# Posterior Predictive Check
ppcplot(posterior_chains, posterior_predictive_chains, observed_data)

# Prior Predictive Check (observed data not shown by default)
ppcplot(prior_chains, prior_predictive_chains, observed_data; ppc_group=:prior)

# Histogram
ppcplot(chains, pp_chains, observed_data; kind=:histogram)

# Cumulative distribution
ppcplot(chains, pp_chains, observed_data; kind=:cumulative)

# Scatter plot with jitter
ppcplot(chains, pp_chains, observed_data; kind=:scatter, jitter=0.5)

# Prior check with observed data shown
ppcplot(prior_chains, pp_chains, observed_data; ppc_group=:prior, observed=true)

# Subset of predictive samples with custom colors
ppcplot(chains, pp_chains, observed_data; 
        num_pp_samples=20, 
        colors=[:blue, :red, :green], 
        random_seed=42)

Notes

The ppc_group parameter controls default behavior:

  • :posterior: Shows observed data by default, uses "Posterior Predictive Check" title
  • :prior: Hides observed data by default, uses "Prior Predictive Check" title
source
MCMCChains.ppcplot!Function
ppcplot(posterior_chains::Chains, posterior_predictive_chains::Chains, observed_data::Vector; kwargs...)

Generate a posterior/prior predictive check (PPC) plot comparing observed data with predictive samples.

PPC plots are a key tool for model validation in Bayesian analysis. They help assess whether the model can reproduce the key features of the observed data by comparing the observed data against samples from the posterior (or prior) predictive distribution.

Arguments

  • posterior_chains::Chains: MCMC samples from the posterior (or prior) distribution
  • posterior_predictive_chains::Chains: Samples from the posterior (or prior) predictive distribution
  • observed_data::Vector: The observed data values

Keywords

  • kind::Symbol (default: :density): Type of plot - :density, :histogram, :scatter, or :cumulative
  • alpha::Real (default: 0.2 for density/cumulative, 0.7 for scatter): Transparency of predictive curves
  • num_pp_samples::Integer (default: all samples): Number of predictive samples to plot
  • mean_pp::Bool (default: true): Whether to plot the mean of predictive distribution
  • observed::Bool (default: true for posterior, false for prior): Whether to plot observed data
  • observed_rug::Bool (default: false): Whether to add a rug plot for observed data (kde/cumulative only)
  • colors::Vector (default: [:steelblue, :black, :orange]): Colors for [predictive, observed, mean_pp]
  • jitter::Real (default: 0.0, 0.7 for scatter with ≤5 samples): Jitter amount for scatter plots
  • legend::Bool (default: true): Whether to show legend
  • random_seed::Integer (default: nothing): Random seed for reproducible subsampling
  • ppc_group::Symbol (default: :posterior): Specify :posterior or :prior for appropriate defaults and labeling

Examples

# Posterior Predictive Check
ppcplot(posterior_chains, posterior_predictive_chains, observed_data)

# Prior Predictive Check (observed data not shown by default)
ppcplot(prior_chains, prior_predictive_chains, observed_data; ppc_group=:prior)

# Histogram
ppcplot(chains, pp_chains, observed_data; kind=:histogram)

# Cumulative distribution
ppcplot(chains, pp_chains, observed_data; kind=:cumulative)

# Scatter plot with jitter
ppcplot(chains, pp_chains, observed_data; kind=:scatter, jitter=0.5)

# Prior check with observed data shown
ppcplot(prior_chains, pp_chains, observed_data; ppc_group=:prior, observed=true)

# Subset of predictive samples with custom colors
ppcplot(chains, pp_chains, observed_data; 
        num_pp_samples=20, 
        colors=[:blue, :red, :green], 
        random_seed=42)

Notes

The ppc_group parameter controls default behavior:

  • :posterior: Shows observed data by default, uses "Posterior Predictive Check" title
  • :prior: Hides observed data by default, uses "Prior Predictive Check" title
source
ppcplot(posterior_chains::Chains, posterior_predictive_chains::Chains, observed_data::Vector; kwargs...)

Generate a posterior/prior predictive check (PPC) plot comparing observed data with predictive samples.

PPC plots are a key tool for model validation in Bayesian analysis. They help assess whether the model can reproduce the key features of the observed data by comparing the observed data against samples from the posterior (or prior) predictive distribution.

Arguments

  • posterior_chains::Chains: MCMC samples from the posterior (or prior) distribution
  • posterior_predictive_chains::Chains: Samples from the posterior (or prior) predictive distribution
  • observed_data::Vector: The observed data values

Keywords

  • kind::Symbol (default: :density): Type of plot - :density, :histogram, :scatter, or :cumulative
  • alpha::Real (default: 0.2 for density/cumulative, 0.7 for scatter): Transparency of predictive curves
  • num_pp_samples::Integer (default: all samples): Number of predictive samples to plot
  • mean_pp::Bool (default: true): Whether to plot the mean of predictive distribution
  • observed::Bool (default: true for posterior, false for prior): Whether to plot observed data
  • observed_rug::Bool (default: false): Whether to add a rug plot for observed data (kde/cumulative only)
  • colors::Vector (default: [:steelblue, :black, :orange]): Colors for [predictive, observed, mean_pp]
  • jitter::Real (default: 0.0, 0.7 for scatter with ≤5 samples): Jitter amount for scatter plots
  • legend::Bool (default: true): Whether to show legend
  • random_seed::Integer (default: nothing): Random seed for reproducible subsampling
  • ppc_group::Symbol (default: :posterior): Specify :posterior or :prior for appropriate defaults and labeling

Examples

# Posterior Predictive Check
ppcplot(posterior_chains, posterior_predictive_chains, observed_data)

# Prior Predictive Check (observed data not shown by default)
ppcplot(prior_chains, prior_predictive_chains, observed_data; ppc_group=:prior)

# Histogram
ppcplot(chains, pp_chains, observed_data; kind=:histogram)

# Cumulative distribution
ppcplot(chains, pp_chains, observed_data; kind=:cumulative)

# Scatter plot with jitter
ppcplot(chains, pp_chains, observed_data; kind=:scatter, jitter=0.5)

# Prior check with observed data shown
ppcplot(prior_chains, pp_chains, observed_data; ppc_group=:prior, observed=true)

# Subset of predictive samples with custom colors
ppcplot(chains, pp_chains, observed_data; 
        num_pp_samples=20, 
        colors=[:blue, :red, :green], 
        random_seed=42)

Notes

The ppc_group parameter controls default behavior:

  • :posterior: Shows observed data by default, uses "Posterior Predictive Check" title
  • :prior: Hides observed data by default, uses "Prior Predictive Check" title
source
MCMCChains.ridgelineplotFunction
ridgelineplot(chains::Chains[, params::Vector{Symbol}]; kwargs...)

Generate a ridgeline plot for the samples of the parameters params in chains.

By default, all parameters are plotted.

Keyword arguments

The following options are available:

  • fill_q (default: false) and fill_hpd (default: true): Fill the area below the curve in the quantiles interval (fill_q = true) or the highest posterior density (HPD) interval (fill_hpd = true). If both fill_q = false and fill_hpd = false, then the whole area below the curve is filled. If no fill color is desired, it should be specified with series attributes. These options are mutually exclusive.

  • show_mean (default: true) and show_median (default: true): Plot a vertical line of the mean (show_mean = true) or median (show_median = true) of the posterior density estimate. If both options are set to true, both lines are plotted.

  • show_qi (default: false) and show_hpdi (default: true): Plot a quantile interval (show_qi = true) or the largest HPD interval (show_hpdi = true) at the bottom of each density plot. These options are mutually exclusive.

  • q (default: [0.1, 0.9]): The two quantiles used for plotting if fill_q = true or show_qi = true.

  • hpd_val (default: [0.05, 0.2]): The complementary probability mass(es) of the highest posterior density intervals that are plotted if fill_hpd = true or show_hpdi = true.

Note

If a single parameter is provided, the generated plot is a density plot with all the elements described above.

source
MCMCChains.ridgelineplot!Function
ridgelineplot(chains::Chains[, params::Vector{Symbol}]; kwargs...)

Generate a ridgeline plot for the samples of the parameters params in chains.

By default, all parameters are plotted.

Keyword arguments

The following options are available:

  • fill_q (default: false) and fill_hpd (default: true): Fill the area below the curve in the quantiles interval (fill_q = true) or the highest posterior density (HPD) interval (fill_hpd = true). If both fill_q = false and fill_hpd = false, then the whole area below the curve is filled. If no fill color is desired, it should be specified with series attributes. These options are mutually exclusive.

  • show_mean (default: true) and show_median (default: true): Plot a vertical line of the mean (show_mean = true) or median (show_median = true) of the posterior density estimate. If both options are set to true, both lines are plotted.

  • show_qi (default: false) and show_hpdi (default: true): Plot a quantile interval (show_qi = true) or the largest HPD interval (show_hpdi = true) at the bottom of each density plot. These options are mutually exclusive.

  • q (default: [0.1, 0.9]): The two quantiles used for plotting if fill_q = true or show_qi = true.

  • hpd_val (default: [0.05, 0.2]): The complementary probability mass(es) of the highest posterior density intervals that are plotted if fill_hpd = true or show_hpdi = true.

Note

If a single parameter is provided, the generated plot is a density plot with all the elements described above.

source
ridgelineplot(chains::Chains[, params::Vector{Symbol}]; kwargs...)

Generate a ridgeline plot for the samples of the parameters params in chains.

By default, all parameters are plotted.

Keyword arguments

The following options are available:

  • fill_q (default: false) and fill_hpd (default: true): Fill the area below the curve in the quantiles interval (fill_q = true) or the highest posterior density (HPD) interval (fill_hpd = true). If both fill_q = false and fill_hpd = false, then the whole area below the curve is filled. If no fill color is desired, it should be specified with series attributes. These options are mutually exclusive.

  • show_mean (default: true) and show_median (default: true): Plot a vertical line of the mean (show_mean = true) or median (show_median = true) of the posterior density estimate. If both options are set to true, both lines are plotted.

  • show_qi (default: false) and show_hpdi (default: true): Plot a quantile interval (show_qi = true) or the largest HPD interval (show_hpdi = true) at the bottom of each density plot. These options are mutually exclusive.

  • q (default: [0.1, 0.9]): The two quantiles used for plotting if fill_q = true or show_qi = true.

  • hpd_val (default: [0.05, 0.2]): The complementary probability mass(es) of the highest posterior density intervals that are plotted if fill_hpd = true or show_hpdi = true.

Note

If a single parameter is provided, the generated plot is a density plot with all the elements described above.

source
MCMCChains.forestplotFunction
forestplot(chains::Chains[, params::Vector{Symbol}]; kwargs...)

Generate a forest or caterpillar plot for the samples of the parameters params in chains.

By default, all parameters are plotted.

Keyword arguments

  • ordered (default: false): If ordered = false, a forest plot is generated. If ordered = true, a caterpillar plot is generated.

  • fill_q (default: false) and fill_hpd (default: true): Fill the area below the curve in the quantiles interval (fill_q = true) or the highest posterior density (HPD) interval (fill_hpd = true). If both fill_q = false and fill_hpd = false, then the whole area below the curve is filled. If no fill color is desired, it should be specified with series attributes. These options are mutually exclusive.

  • show_mean (default: true) and show_median (default: true): Plot a vertical line of the mean (show_mean = true) or median (show_median = true) of the posterior density estimate. If both options are set to true, both lines are plotted.

  • show_qi (default: false) and show_hpdi (default: true): Plot a quantile interval (show_qi = true) or the largest HPD interval (show_hpdi = true) at the bottom of each density plot. These options are mutually exclusive.

  • q (default: [0.1, 0.9]): The two quantiles used for plotting if fill_q = true or show_qi = true.

  • hpd_val (default: [0.05, 0.2]): The complementary probability mass(es) of the highest posterior density intervals that are plotted if fill_hpd = true or show_hpdi = true.

source
MCMCChains.forestplot!Function
forestplot(chains::Chains[, params::Vector{Symbol}]; kwargs...)

Generate a forest or caterpillar plot for the samples of the parameters params in chains.

By default, all parameters are plotted.

Keyword arguments

  • ordered (default: false): If ordered = false, a forest plot is generated. If ordered = true, a caterpillar plot is generated.

  • fill_q (default: false) and fill_hpd (default: true): Fill the area below the curve in the quantiles interval (fill_q = true) or the highest posterior density (HPD) interval (fill_hpd = true). If both fill_q = false and fill_hpd = false, then the whole area below the curve is filled. If no fill color is desired, it should be specified with series attributes. These options are mutually exclusive.

  • show_mean (default: true) and show_median (default: true): Plot a vertical line of the mean (show_mean = true) or median (show_median = true) of the posterior density estimate. If both options are set to true, both lines are plotted.

  • show_qi (default: false) and show_hpdi (default: true): Plot a quantile interval (show_qi = true) or the largest HPD interval (show_hpdi = true) at the bottom of each density plot. These options are mutually exclusive.

  • q (default: [0.1, 0.9]): The two quantiles used for plotting if fill_q = true or show_qi = true.

  • hpd_val (default: [0.05, 0.2]): The complementary probability mass(es) of the highest posterior density intervals that are plotted if fill_hpd = true or show_hpdi = true.

source
forestplot(chains::Chains[, params::Vector{Symbol}]; kwargs...)

Generate a forest or caterpillar plot for the samples of the parameters params in chains.

By default, all parameters are plotted.

Keyword arguments

  • ordered (default: false): If ordered = false, a forest plot is generated. If ordered = true, a caterpillar plot is generated.

  • fill_q (default: false) and fill_hpd (default: true): Fill the area below the curve in the quantiles interval (fill_q = true) or the highest posterior density (HPD) interval (fill_hpd = true). If both fill_q = false and fill_hpd = false, then the whole area below the curve is filled. If no fill color is desired, it should be specified with series attributes. These options are mutually exclusive.

  • show_mean (default: true) and show_median (default: true): Plot a vertical line of the mean (show_mean = true) or median (show_median = true) of the posterior density estimate. If both options are set to true, both lines are plotted.

  • show_qi (default: false) and show_hpdi (default: true): Plot a quantile interval (show_qi = true) or the largest HPD interval (show_hpdi = true) at the bottom of each density plot. These options are mutually exclusive.

  • q (default: [0.1, 0.9]): The two quantiles used for plotting if fill_q = true or show_qi = true.

  • hpd_val (default: [0.05, 0.2]): The complementary probability mass(es) of the highest posterior density intervals that are plotted if fill_hpd = true or show_hpdi = true.

source